Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Earth Space Sci ; 9(10): e2022EA002430, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36588669

RESUMO

Surface heterogeneities below the spatial resolution of thermal infrared (TIR) instruments result in anisothermality and can produce emissivity spectra with negative slopes toward longer wavelengths. Sloped spectra arise from an incorrect assumption of either a uniform surface temperature or a maximum emissivity during the temperature-emissivity separation of radiance data. Surface roughness and lateral mixing of different sub-pixel surface units result in distinct spectral slopes with magnitudes proportional to the degree of temperature mixing. Routine Off-nadir Targeted Observations (ROTO) of the Thermal Emission Imaging Spectrometer (THEMIS) are used here for the first time to investigate anisothermality below the spatial resolution of THEMIS. The southern flank of Apollinaris Mons and regions within the Medusae Fossae Formation are studied using THEMIS ROTO data acquired just after local sunset. We observe a range of sloped TIR emission spectra dependent on the magnitude of temperature differences within a THEMIS pixel. Spectral slopes and wavelength-dependent brightness temperature differences are forward-modeled for a series of two-component surfaces of varying thermal inertia values. Our results imply that differing relative proportions of rocky and unconsolidated surface units are observed at each ROTO viewing geometry and suggest a local rock abundance six times greater than published results that rely on nadir data. High-resolution visible images of these regions indicate a mixture of surface units from boulders to dunes, providing credence to the model.

2.
J Geophys Res Planets ; 125(12): e2020JE006527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33520561

RESUMO

This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray-colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe-rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric-related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.

3.
J Geophys Res Planets ; 121(9): 1713-1736, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27867788

RESUMO

We have developed a refined geologic map and stratigraphy for lower Mount Sharp using coordinated analyses of new spectral, thermophysical, and morphologic orbital data products. The Mount Sharp group consists of seven relatively planar units delineated by differences in texture, mineralogy, and thermophysical properties. These units are (1-3) three spatially adjacent units in the Murray formation which contain a variety of secondary phases and are distinguishable by thermal inertia and albedo differences, (4) a phyllosilicate-bearing unit, (5) a hematite-capped ridge unit, (6) a unit associated with material having a strongly sloped spectral signature at visible near-infrared wavelengths, and (7) a layered sulfate unit. The Siccar Point group consists of the Stimson formation and two additional units that unconformably overlie the Mount Sharp group. All Siccar Point group units are distinguished by higher thermal inertia values and record a period of substantial deposition and exhumation that followed the deposition and exhumation of the Mount Sharp group. Several spatially extensive silica deposits associated with veins and fractures show that late-stage silica enrichment within lower Mount Sharp was pervasive. At least two laterally extensive hematitic deposits are present at different stratigraphic intervals, and both are geometrically conformable with lower Mount Sharp strata. The occurrence of hematite at multiple stratigraphic horizons suggests redox interfaces were widespread in space and/or in time, and future measurements by the Mars Science Laboratory Curiosity rover will provide further insights into the depositional settings of these and other mineral phases.

5.
Appl Opt ; 52(11): 2200-17, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23670748

RESUMO

The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars. Miniaturization of this instrument has also been demonstrated, as the same microscope objective has been mounted to a flight-spare mini-TES. Further miniaturization of this instrument is straightforward with modern electronics, and the development of this instrument as an arm-mounted device is the end goal.

7.
8.
Appl Opt ; 38(21): 4699-704, 1999 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18323957

RESUMO

The development of a laser diode absorption spectrometer that uses a strong water vapor absorption at 1393 nm is reported. Three spectroscopic techniques were compared in approximately 0.4 m of laboratory air, namely, frequency modulation, wavelength modulation, and two-tone frequency modulation spectroscopy. The first two techniques use a single-frequency modulation at 9.2 GHz and 1 kHz, respectively, generated either by a phase modulator operating at 9.2 GHz or injection current modulation at 1 kHz. The two-tone method requires modulation at two frequencies, in this case 9.19 and 9.21 GHz. It is shown that the two-tone method should provide the highest sensitivity for a trace moisture detection system.

9.
Opt Lett ; 18(9): 732-4, 1993 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19802255

RESUMO

The first application, to our knowledge, of an all-solid-state system of lasers to the study of a single cooled trapped Sr(+) ion is described. Quantum jumps have been observed by driving the 674-nm 5s(2)S(1/2)-4d(2)D(5/2) transition, and preliminary observations of the line shape are reported. An upper limit for the temperature of a single ion, derived from the 674-nm linewidth, was 200 mK. If non-Doppler sources of broadening such as unresolved Zeeman structure dominate, then the temperature limit would be even lower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...